SUMAPS5690
Environmental Infrastructure for Sustainable Cities: Policy to Plan to Implementation

Spring 2023

3 Credits

Day: Wednesdays, 6:10-8:00

Instructor: Carter Strickland, Carter.Strickland@gmail.com

Location: 303 Hamilton Hall (in-person)

Faculty Support Assistant: Arissa Lahr, al4093@columbia.edu

Office Hours: Mondays, 5:00-6:00 (via Zoom/phone)

Response Policy: My preferred means of communication is email to the address above. Students should expect a response from me within 24 hours.

Overview

This class is about the physical infrastructure that determines the capacity and sustainability of cities. Integrated networks of transportation, water, waste, stormwater, energy, park, and communication infrastructure are required for land- and resource-efficient cities that can survive extreme weather. Yet we have been building too little, too slowly to maintain legacy systems, let alone to retrofit our cities with efficient, innovative infrastructure. Recent political breakthroughs have created federal investments and a once-in-a generation opportunity to shift our cities to low-carbon modes – if we adopt better approaches to project planning, funding, and delivering critical assets that include public-private partnerships.

This course is designed to create sustainability leaders who will build the cities of tomorrow, drawing on lessons from the instructor’s experience in developing sustainability policies and related capital programs, and by understanding and critiquing the full spectrum of infrastructure development in New York City and other major cities across the project life cycle, from planning to project delivery to asset management.

Course Objectives

Through case studies, field trips, guest lectures, discussions of real-world developments, and readings, students will develop an understanding of the role of infrastructure and different approaches on catalyzing public and political support for system-level policies and funding, cost-benefit analysis and prioritization for program-level planning and for alternative delivery and private-public partnerships project-level implementation. Students will apply these lessons to current infrastructure issues in both team and individual formats that track the professional settings they will face after graduation, and will receive constructive feedback from their peers.
This course is approved for the M.S. in Sustainability Management curriculum area requirements Area 1 (Integrated sustainability management) and Area 4 (public policy and legal).

Learning Objectives
By the end of this course, students will have the capacity to be active leaders on infrastructure development teams because they will be able to:

- Discuss the importance of infrastructure to improving the environment and creating sustainable cities and communities, and be familiar with the UN Sustainable Development Goals and implementing systems like the Envision rating system for sustainable infrastructure;
- Understand the importance of federal, state, and municipal policy and funding to infrastructure development, how policy is created, and how policy can be influenced;
- Understand the sustainable and resiliency infrastructure and business opportunities created by the Infrastructure Investment and Jobs Act, the Inflation Reduction Act, and other recent federal, state, and local bond measures.
- Discuss and analyze standard infrastructure development stages and requirements, as well as different procurement approaches;
- Explain the characteristics and benefits of public private partnerships and alternative delivery mechanisms and analyze whether those mechanisms are appropriate for any or all stages of a particular project;
- Present analysis and solutions in different formants (group oral presentation with slides/graphics, and a written business case); and
- Develop expertise on the subject matters chosen for the group and individual projects for professional development and job interviews.

Resources
Readings. Required readings and optional readings are listed for each class in the course calendar below. The following books and reports are useful for general reference but are not required except as indicated:

- New York City, PlaNYC (2007)
- New York City, PlaNYC (2011)
- New York City, OneNYC (2015)
- Regional Plan Association, The Fourth Regional Plan (2017)
- Ascher, Kate, and Wendy Marech. The Works: Anatomy of a City. New York: Penguin, 2005 (or the 2007 copy). Textbook available in the library, and new and used copies are also available on Amazon for a reasonable price.

Columbia University Library. Columbia’s extensive library system ranks in the top five academic libraries in the nation, with many of its services and resources available online:
http://library.columbia.edu/.
SPS Academic Resources. The Office of Student Life and Alumni Relations (SLAR) provides students with academic counseling and support services such as online tutoring and career coaching: http://sps.columbia.edu/student-life-and-alumni-relations/academic-resources.

Class Policies

Participation and Attendance
This class is designed to facilitate discussion, so full and active participation is a key, and graded, part of the course. So that the whole class benefits, students are expected to be fully prepared for class by completing all reading and actively thinking about the issues to be discussed, and then are expected to participate actively in class through insightful questions count or observations. If you need to miss a class for any reason, please discuss the absence with me in advance.

Zoom will be an option by advance permission for students who are sick, self-quarantining, or traveling for business. Note also these new class norms with respect to online classes that are university-wide:

- Students are expected to participate in each class with your Zoom audio and video on.
- Students may not share the Zoom classroom recordings. The recordings are kept within the Columbia Classes site and are for students enrolled in this course only.

Late Work
There will be no credit granted to any written assignment that is not submitted on the due date noted in the course syllabus without advance notice and permission from the instructor.

Citation & Submission
All written assignments must cite sources and be submitted to the course website (not via email).

Assignments and Evaluation

Grading
Grades will be determined from the following allocation:

- Participation (15%).
- Group Presentation on an Infrastructure Problem and Potential Solutions (35%)
- Individual Memorandum and Business Case Analysis on an Infrastructure Delivery Plan (50%)

1. Participation
Classroom discussion: I will be using a presentation as the backbone of the class but expect and encourage a robust discussion and questions based on the readings, your experience, and your observations.
Discussion board: I will be assigning students each week to lead a discussion on the Courseworks forums by posting their reactions and analysis of readings. As with the in-class discussions, it is my expectations that others will jump in with refinements, disagreements, and other reactions.

Infrastructure tour: An infrastructure tour will also be scheduled per discussion with the class.

2. Group Presentation
Students will form “consultancies” of up to four students that have been “hired” by a public agency or authority to help solve a complex issue through the use in whole or part with infrastructure (i.e., other policy issues that do not require infrastructure solutions are not relevant for this course). The output will be a written and oral presentation to the class and professor (playing the part of public officials and not general stakeholders). Students will be challenged to explain the issue, to present analysis, and to propose solutions in 15 minutes with 10 slides.

The presentation can be developed in any way the group thinks is effective, but should follow a general two-part structure:

1. Problem definition and analysis: What is the problem, its economic, environmental, and social costs, and its equitable/inequitable distribution? What are the causes of the problem? What data exists or can be created to help understand the problem?

2. Solution generation and alternatives analysis: What is role of infrastructure (and supporting policy interventions) in generating a range of solutions? How should we rank solutions based on feasibility (economic, environmental, technological readiness, stakeholder acceptance or other criteria), cost-benefit analysis, or other decision frameworks? Is a phased approached with demonstration projects recommended or necessary? What funding and operational needs must be met to implement the solutions

Progress Milestones:
- Groups formed (team assignments based on general area of interest) (Class 6)
- Topics submitted (Class 7)
- Consultation with professor
- Team meetings
- In-class presentation with questions and feedback from non-presenting students; and
- Group self-assessment.

3. Individual Paper
Following a similar structure form the group presentation, each student will prepare an in-depth paper exploring a infrastructure problem and solution. If the topic is historical infrastructure, the memorandum should describe what happened, why, and how, and the perceived benefits and costs, and should also include critical analysis, such as whether there were better alternatives, why alternatives were rejected, and how the project or program procurement, governance, financing could have been improved. The length should be long enough to inform the audience but should be modeled on decision documents in a practical rather than scholarly context.
The target length should be between 15 and 20 pages (or about 3,500 to 5,000 words) with the word count posted at the end. Format shall be normal 1” margins, 12 point font, double spaced, with footnotes on the same page as the text (i.e., not endnotes or scientific, parenthetical citation formats.)

To inspire your selection of a topic for your group and individual project, here are some infrastructure developments or topics, many of which were developed in response to environmental and social problems, but some of which may represent problems in of themselves (e.g., neglected, or underused infrastructure) or innovative delivery approaches. You can also peruse recent capstone topics in the program, but I will not allow you to repeat a topic from your own capstone project. I encourage you to be creative and to pick a topic that interests you to the point of obsession. You can become the world expert on any topic.

General
- Infrastructure Investment and Jobs Act/Inflation Reduction Act
- New York Bond Act
- Depression Era infrastructure initiatives (WPA, CCC, etc.)
- Midtown rezoning and infrastructure
- Sunnyside Yards Redevelopment

Transportation
- Complete Streets Plan
- Bike lanes / Open Streets Plan / Five Borough Bike Plan
- Bikeshare / scootershare (docked and undocked)
- State Greenways Plan / Empire State Trail / Long Island Greenway
- Better Buses Action Plan / Rapid Bus Transit / Queens Master Bus Plan
- Autonomous Vehicles
- Electric Charging Station Networks
- Gateway tunnel(s)
- East Side Access project
- Airport rail connections (LaGuardia, Denver, JFK)
- LaGuardia Airport renovation / Public-Private Partnerships
- Tri-Boro Rail/IBX
- California High Speed Rail
- Uber / Lyft / rideshare
- Electronic tolling / cordon or congestion pricing
- LIRR Third Rail

Water / Wastewater
- Rondout West Branch Tunnel Repair
- Green Infrastructure
- Stormwater Utilities
- Lake Powell Pipeline
- Carlsbad Desalination Plant
- Santa Clara Reuse Plant
- San Antonio Water Purchase Agreement
- Three Gorges Dams (China)
- Resource recovery from wastewater (phosphorus, Class A biosolids, energy, reusable water)
- Colorado/Texas/California Water Plans
- Lead service lines
- Building water tanks

Energy
- Transmission Lines (HydroQuebec, Clean Path)
- Indian Point Nuclear Plant and alternatives
- Pipelines (Keystone, Spectra, Constitution, Northeast Energy Direct)
- LNG Piers / Fracking
- Off-shore/On-shore Wind Power farms
- Solar installations (distributed and in solar farms)
- Microgrids / nanogrids
- Anaerobic digestors / landfill gas capture
- Biomass-based liquid fuels, sustainable aviation fuel
- Distributed generation (microturbines, fuel cells, storage)
- Hydropower
- Hydrogen
Solid Waste
- Organic waste recycling systems (collection, composting, biogas)
- Solid Waste Management Plan Update (2026)
- Incinerators / Waste to Energy Facilities
- Anaerobic Digesters
- Garbage disposals
- Recycling systems and markets
- Bag taxes and other reduction systems

Communications
- Link NYC
- NYC Broadband Plan
- Google Fiber Deployment Plan

Resiliency
- NY Climate Leadership and Protection Act, and related Bond Act
- Flood buyout programs / NJ Blue Acres / Buyback and deconstruction / migration programs
- BIG U (and its variants, including the East Side Coastal Resiliency and Lower Manhattan Resiliency projects)

Progress Milestones:
- Topics submitted (Week 10 at the latest);
- Consultation with professor (office hours before Weeks 12 through 14); and
- Submittal of the paper (Week 15)

Student work and progress towards course goals will be evaluated by professional standards, i.e., demonstrating a thorough understanding of applicable concepts, comprehensive research, rigorous analysis, and an unbiased, persuasive, and clear recommendation for action. In other words, a public official would find the presentation or document to be a sound basis to make a decision. Our emphasis is on the depth of thought, clarity of expression, and brevity, not the number of words. Students are encouraged to spend at least twice as much time thinking and talking through the problem and solutions, as in writing. Once students have a clear, logical framing of the problem and solution, the writing will be better and easier.

Students must include an address on the paper if they want it returned.

Grading Rubrics and Scale
Detailed grading rubrics will be distributed before the group and individual assignments. Letter grades for the entire course will be assigned as follows:
Student grades will be assigned according to the following criteria:

- **(A) Excellent:** Exceptional work for a graduate student. Work at this level is unusually thorough, well-reasoned, creative, methodologically sophisticated, and well written. Work is of exceptional, professional quality.

- **(A-) Very good:** Very strong work for a graduate student. Work at this level shows signs of creativity, is thorough and well-reasoned, indicates strong understanding of appropriate methodological or analytical approaches, and meets professional standards.

- **(B+) Good:** Sound work for a graduate student; well-reasoned and thorough, methodologically sound. This is the graduate student grade that indicates the student has fully accomplished the basic objectives of the course.

- **(B) Adequate:** Competent work for a graduate student even though some weaknesses are evident. Demonstrates competency in the key course objectives but shows some indication that understanding of some important issues is less than complete. Methodological or analytical approaches used are adequate but student has not been thorough or has shown other weaknesses or limitations.

- **(B-) Borderline:** Weak work for a graduate student; meets the minimal expectations for a graduate student in the course. Understanding of salient issues is somewhat incomplete. Methodological or analytical work performed in the course is minimally adequate. Overall performance, if consistent in graduate courses, would not suffice to sustain graduate status in "good standing."

- **(C-/+/+) Deficient:** Inadequate work for a graduate student; does not meet the minimal expectations for a graduate student in the course. Work is inadequately developed or flawed by numerous errors and misunderstanding of important issues. Methodological or analytical work performed is weak and fails to demonstrate knowledge or technical competence expected of graduate students.

- **(F) Fail:** Work fails to meet even minimal expectations for course credit for a graduate student. Performance has been consistently weak in methodology and understanding, with serious limits in many areas. Weaknesses or limits are pervasive.
Overview of the Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Jan 18</td>
<td>The Role of Infrastructure in Sustainability, Economic Development, and Public Health</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Jan 25</td>
<td>Catalyzing Infrastructure Development; Stakeholders and Public Engagement</td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Feb 1</td>
<td>Funding, Financing, and Procuring Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>Feb 8 – Zoom Class</td>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Feb 15</td>
<td>Water & Wastewater</td>
<td>Identify area of interest for group project</td>
</tr>
<tr>
<td>Week 6</td>
<td>Feb 22</td>
<td>Solid Waste</td>
<td>Teams formed or assigned</td>
</tr>
<tr>
<td>Week 7</td>
<td>March 1</td>
<td>Parks & Open Space</td>
<td>Group topics submitted</td>
</tr>
<tr>
<td>Week 8</td>
<td>March 9 – Zoom Class – Thurs class</td>
<td>Zoom Makeup Class: Energy and Communications</td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td>March 22</td>
<td>Group Presentations</td>
<td>Group presentations</td>
</tr>
<tr>
<td>Week 10</td>
<td>March 29</td>
<td>Group Presentations</td>
<td>Group presentations</td>
</tr>
<tr>
<td>Week 11</td>
<td>April 5</td>
<td>Sustainable and Resilient Infrastructure</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>April 12</td>
<td>Rescheduled</td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>April 19</td>
<td>Integrated City-Level Infrastructure</td>
<td>Final paper topics</td>
</tr>
<tr>
<td>Week 13</td>
<td>April 26</td>
<td>Alternative Delivery and Private-Public Partnerships</td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>TBD</td>
<td>Infrastructure Tour</td>
<td></td>
</tr>
<tr>
<td>Week 15</td>
<td>May 5</td>
<td></td>
<td>Final paper due at 5 pm</td>
</tr>
</tbody>
</table>

Detailed Course Overview
Week 1: The Role of Infrastructure in Sustainability, Economic Development, and Public Health

This class focuses on the relationship between infrastructure, the economy, public health, and the environment. We will examine demographic and climatic trends that intersect to make cities inevitable and sustainable and resilient cities imperative, the historic importance of infrastructure for economic development, and the current importance of networked environmental infrastructure for the necessities of life and public health. We will also introduce concepts of federalism that are unique to delivery of infrastructure in the U.S.

Case Studies and readings

Required
- David Owens, Green Manhattan, New Yorker (Oct. 18, 2004).

Supplemental
- Catherine Brinkley, Pandemics Have Actually Made Cities Better, Fast Company, (May 19, 2020)

Week 2: Catalyzing Infrastructure Development; Stakeholders and Public Engagement

In this class we assess the present state of the U.S. infrastructure and past attempts, successful and unsuccessful, to catalyze investment and development. Within that context we will discuss (1) key decision-makers, the political context of infrastructure, and other methods for creating momentum for investment in infrastructure, (2) the role of strategic planning and preliminary studies such as charettes, vision plans, and feasibility studies for catalyzing programs and projects, and (3) the role of community and stakeholder engagement and partnerships, from community mobilization to environmental justice.

Case studies and readings:

Required
- PlaNYC (2011) Introduction (pp. 3-13)
- OneNYC (2015) Introduction (pp. 14-17, 30-32, 113-119)
- Regional Plan Association, The Fourth Regional Plan (2017), Executive Summary
- White House, Fact Sheet: The American Jobs Plan (March 31, 2021)
- Rebuild By Design, Resilient Infrastructure for New York State (2021)

Supplemental
- Vox, The Green New Deal Explained (video) (June 12, 2019)
- AECOM, Economic Impacts of the New York State Environmental Bond Act (2022)
Week 3: Funding and Financing Infrastructure

In this class we consider different models of funding and financing infrastructure and related structural issues of how funds can be collected and spent, federalism issues in the context of infrastructure funding, the role of special authorities and other efforts to de-politicize the process, and general funding approaches (e.g., taxes, tax increment financing, user fees, enterprise funds, trust funds, municipal bonds, tax credits, private financing with equity and debt).

Case studies and readings:

Required
- U.S. Senate, *Bipartisan Infrastructure Investment and Jobs Act Summary* (2022) (read 1-5, skim the rest as interested)

Supplemental
- McKinsey, *The Inflation Reduction Act: Here’s What’s In It* (October 2022)
- Jane Margolies, *Climate Law a ‘Game Changer’ for Highways and Bridges*, New York Times (September 6, 2022)
- Federal Highway Administration, Center for Innovative Finance Support, *State Infrastructure Banks*

Week 4: Transportation

In this first class on a specific infrastructure sector, we will discuss transportation and its relationship to equity and social mobility and economic development, why we value mobility, and the importance of realistic, multi-modal alternatives. We will consider innovations in physical forms (e.g., complete streets, parking policies, transit-oriented development), financing (e.g., user fees and sensor tolling), business models (e.g., rideshares, micromobility), fueling (e.g., EV chargers, CNG stations, hydrogen cell refills), and freight optimization in the urban context.

Guest lecture: Will Carry, Assistant Commissioner for Policy, New York City Department of Transportation.

Case studies and readings:
Week 5: Water and Wastewater

This class will discuss water and wastewater, two critical public health infrastructure systems that have been critical to the very concept of dense development since the earliest cities. We will explore watersheds and other natural systems, green infrastructure for stormwater management, government and regulated private utility arrangements, generation, equitable user fees and rate structures, and incentives to conserve water use.

Case studies and readings:

Required

- PlaNYC (2011), pp. 58-85
- New York City Department of Environmental Protection, *Wastewater 101* (2022) (presentation)
- Renewable Rikers Coalition, *A Plan for a Renewable Rikers* (2022)
- New York City Department of Environmental Protection, *NYC Green Infrastructure Plan* (2010) (Executive Summary)
- BronxNet, *Daylighting Tibbett's Brook* (video)

Supplemental

- Video: *New York Streets? Not so Mean Anymore* (Ted Talk with Janette Sadik Khan)
- John Surcio, *Can ‘Open Streets’ Outlast the Pandemic?* – Bloomberg CityLab (April 29, 2021)
- *NYC Ferry Overview* (read the embedded studies if interested in the topic)
- *America’s Transportation Infrastructure -- A Funding Crisis*, Traffic Technology Today (Nov. 28, 2020)
• MWRA Boston, *How We Cleaned Up the Dirtiest Harbor In America* (2012) (Video)
• Michelle Nijhuis, *The Abandoned Plan That Could Have Saved America From Drought*, BuzzFeed (Sept. 18, 2015).

Week 6: Solid Waste

Waste management has an enormous impact on the livability of cities – and upon climate, public health, the environment and the economy. In this class we will discuss the importance of solid waste management to city carbon reduction goals, the logistics, economics, and failures of composting and recycling, the benefits and disadvantages of various waste management technologies such as incineration, landfilling, recycling, composting, and anaerobic digestion,

Case Studies and Readings:

Required
- PlaNYC (2011), pp. 132-145
- OneNYC, Zero Waste Plan, pp. 176-187
- Rivka Galchen, The New Yorker, *How South Korea is Composting its Way to Sustainability* (March 2, 2020)

Supplemental

Week 7: Parks and Open Space

Parks and open space in cities have long been a sought-after amenity in cities, and have been built by developers to enhance the value of their residential and commercial property. This class will discuss the new understanding of parks as critical urban infrastructure and a first-order intervention to improve a broad range of problems: crime, community disinvestment, inequity, poor public health, and explore to climate change. We will discuss models of park development, operations, and measurements of success.

Case studies and readings:

Required Ir
- PlaNYC (2007), pp. 28-39
Week 8: Energy

This class will discuss energy infrastructure systems, which underlie most other infrastructure systems but are provided by investor-owned utilities in the United States under a regulated monopoly paradigm. We will discuss the role of government and the market in shaping energy policy, sustainability, and dependability on a city level, supply versus demand management, energy-efficiency and green building mandates and incentives, and interdependence with emerging green building and electric vehicle technologies.

Guest lecture: Steve Caputo, Assistant Commissioner, Energy Management, NYC Department of Citywide Administrative Services

Case studies and readings:

Required
- PEAK Coalition, *Dirty Energy, Big Money* (2020)
- *The Impact of New York’s Climate Leadership and Community Protection Act*, Bloomberg Law (October 23, 2020)

Supplemental
- C40, *Case Study: 98% of Copenhagen City Heating Supplied by Waste Heat* (2011)
- Feargus O'Sullivan, *Sweden Will Meet Its 2030 Green Energy Target 12 Years Early* CityLab (July 20, 2018).
• Reinhard Madlener et al., Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management?, Sustainable Cities and Society, 1: 45–53 (2011)

Communications

Communications infrastructure – telephone, mail, telephone and radio, and now broadband – does not directly address pollution or emissions, but can have a dramatic impact on land use patterns, equitable access to jobs, the rapid cross-fertilization of ideas that is one of the core benefits of city living, and even our core rights of privacy and expression. We will discuss the impact of the Covid epidemic on demand and the role of federal, state, and local government in facilitating broadband access and smart infrastructure, as well as the unseen environmental impact of data centers on water/energy demand.

Case studies and readings:

Required
• Office of the Inspector General, The Postal Service’s Role as Infrastructure (2014)
• New York City, The Internet Master Plan, (2020) (Executive Summary only)
• McKinsey Global Institute, Smart Cities: Digital Solutions for a more Livable Future (2018) (Executive Summary Only)

Supplemental
• DW Shift, Smart City: Surveillance or Utopia? (Oct. 2019) (short video)
• Aitor Hernández-Morales et al, The Death of the City: Teleworking, not the Coronavirus, is Making City Living Obsolete, Politico (Aug. 3, 2020)

Spring Break- No Class

Week 9: Group Presentations and Discussions

Student groups will make a presentation on an economic or environmental issue, present their analysis of alternatives, and propose solutions. Groups are allotted 15 minutes, plus 5 minutes for additional discussion.

Week 10: Group Presentations and Discussions, Continued

Week 11: Sustainable and Resilient Infrastructure

This class explores how all infrastructure projects can be made more sustainable in both the construction and operation phases using Envision and other rating systems and other
approaches, and then zooms out to a city or regional scale to explore the infrastructure systems that are being developed in the wake of Hurricanes Sandy and Ida to guard against coastal and overland flooding, as well as to adapt to other aspects of climate change, including man-made and nature-based infrastructure.

Guest Lecturer: B.J. Jones, CEO, Battery Park City Authority

Case studies and readings:

Required
- New York City, *A Stronger, More Resilient New York* (2013) (pp. 9-18, 37-66, one of the infrastructure chapters, and one of the community chapters)
- New York City, *FiDi/Seaport Climate Master Plan* (Executive Summary)
- NYC Department of Environmental Protection, *NYC Stormwater Maps* (2022) (check your home against the 2080 extreme flooding maps)

Supplemental
- Institute for Sustainable Infrastructure, *Sustainable Infrastructure Framework*, (pp. 1-15)
- New York is Building “Living” Wave Barriers to Prepare for the Next Superstorm, Scientific American. (May 1, 2020)
- *A Map of NYC Before it was a City Could Provide Answers to Today’s Flooding*, Spectrum News NY1 (October 2022)
- Army Corp of Engineers Releases Details of Long-Awaited Coastal Resiliency Plan, The City (September 26, 2022)

Week 12: Integrated City-Level Infrastructure

What if we could build a city from the ground up today, using up to date technology? In fact, city planners and builders are tearing down old ports and decking over railyards to build new neighborhoods, and are even building whole cities in reclaimed land and deserts. We will discuss whether these cities are repeating old patterns (or creating new problems), or are demonstrating how all cities can be more resilient and sustainable.

Case studies and readings:

Required
• Zoe Rosenburg, Sunnyside Yard plan is a utopian vision for an urban future, Curbed (Mar. 4, 2020)
• Patrick Sisson, Songdo, South Korea's City of the Future, Has a Green Vision, Curbed (Nov. 2, 2015).
• Laura Bliss, Inside a Pedestrian-First ‘Superblock’, City Lab (Aug. 7, 2018) (also watch the video)

Supplemental
• Alex Bozikovic, Google’s Sidewalk Labs signs deal for ‘smart city’ makeover of Toronto’s waterfront, The Globe and Mail (June 12, 2018).
• Laura Bliss, How Smart Should a City Be? Toronto Is Finding Out, CityLab (Sep. 7, 2018).

Week 13: Procurement, Alternative Delivery, and Private-Public Partnerships
This class discusses current challenges with current government procurement of infrastructure design and construction, as well as creative solutions for financing, developing, and operating infrastructure that involve private and public partnerships.

Case studies and readings:

Required
• Alon Levy, Why American Costs Are So High (Work-in-Progress), Pedestrian Observations Blog (March 3, 2019)
• John Surico, Stretching New York City's Capital Dollars, Center for Urban Future (Apr. 2021) (Introduction only)
• New York University Rudin Center for Transportation, Maximizing the Value of Construction: The Role of Design-Build (2015)

Supplemental
• Regional Plan Association, RPA Reveals Underlying Reasons MTA Megaprojects Cost More than Twice as Much Than Peer Cities and Basic Steps to Save Billions (Feb. 6, 2018).
• Hunter Blair, Economic Policy Institute, No Free Bridge: Why public–private partnerships or other ‘innovative’ financing of infrastructure will not save taxpayers money (Mar. 21, 2017).

Week 14: Infrastructure Tour
TBD based on class input
Week 15: Paper Due